Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Cell Prolif ; : e13647, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38605678

RESUMEN

Major zygotic genome activation (ZGA) occurs at the late 2-cell stage and involves the activation of thousands of genes, supporting early embryonic development. The reasons underlying the regulation of ZGA are not clear. Acetylation modifications of histone tails promote transcriptional activation, and the maternal deletion of H4K16ac leads to failure in ZGA. GATAD2B is one of the core subunits of the nucleosome remodelling and histone deacetylation (NuRD) complex. Our research has shown that GATAD2B exhibits specific nucleus localization and high protein expression from the late 2-cell stage to the 8-cell stage. This intriguing phenomenon prompted us to investigate the relationship between GATAD2B and the ZGA. We discovered a distinctive pattern of GATAD2B, starting from the late 2-cell stage with nuclear localization. GATAD2B depletion resulted in defective embryonic development, including increased DNA damage at morula, decreased blastocyst formation rate, and abnormal differentiation of ICM/TE lineages. Consistent with the delay during the cleavage stage, the transcriptome analysis of the 2-cell embryo revealed inhibition of the cell cycle G2/M phase transition pathway. Furthermore, the GATAD2B proteomic data provided clear evidence of a certain association between GATAD2B and molecules involved in the cell cycle pathway. As hypothesized, GATAD2B-deficient 2-cell embryos exhibited abnormalities in ZGA during the maternal-to-embryonic transition, with lower expression of the major ZGA marker MERVL. Overall, our results demonstrate that GATAD2B is essential for early embryonic development, in part through facilitating ZGA.

2.
J Exp Clin Cancer Res ; 43(1): 130, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689348

RESUMEN

BACKGROUND: Medulloblastomas (MBs) are one of the most common malignant brain tumor types in children. MB prognosis, despite improvement in recent years, still depends on clinical and biological risk factors. Metastasis is the leading cause of MB-related deaths, which highlights an unmet need for risk stratification and targeted therapy to improve clinical outcomes. Among the four molecular subgroups, sonic-hedgehog (SHH)-MB harbors clinical and genetic heterogeneity with a subset of high-risk cases. Recently, long non-coding (lnc)RNAs were implied to contribute to cancer malignant progression, but their role in MB remains unclear. This study aimed to identify pro-malignant lncRNAs that have prognostic and therapeutic significance in SHH-MB. METHODS: The Daoy SHH-MB cell line was engineered for ectopic expression of MYCN, a genetic signature of SHH-MB. MYCN-associated lncRNA genes were identified using RNA-sequencing data and were validated in SHH-MB cell lines, MB tissue samples, and patient cohort datasets. SHH-MB cells with genetic manipulation of the candidate lncRNA were evaluated for metastatic phenotypes in vitro, including cell migration, invasion, sphere formation, and expressions of stemness markers. An orthotopic xenograft mouse model was used to evaluate metastasis occurrence and survival. Finally, bioinformatic screening and in vitro assays were performed to explore downstream mechanisms. RESULTS: Elevated lncRNA LOXL1-AS1 expression was identified in MYCN-expressing Daoy cells and MYCN-amplified SHH-MB tumors, and was significantly associated with lower survival in SHH-MB patients. Functionally, LOXL1-AS1 promoted SHH-MB cell migration and cancer stemness in vitro. In mice, MYCN-expressing Daoy cells exhibited a high metastatic rate and adverse effects on survival, both of which were suppressed under LOLX1-AS1 perturbation. Integrative bioinformatic analyses revealed associations of LOXL1-AS1 with processes of cancer stemness, cell differentiation, and the epithelial-mesenchymal transition. LOXL1-AS1 positively regulated the expression of transforming growth factor (TGF)-ß2. Knockdown of TGF-ß2 in SHH-MB cells significantly abrogated their LOXL1-AS1-mediated prometastatic functions. CONCLUSIONS: This study proved the functional significance of LOXL1-AS1 in SHH-MB metastasis by its promotion of TGF-ß2-mediated cancer stem-like phenotypes, providing both prognostic and therapeutic potentials for targeting SHH-MB metastasis.


Asunto(s)
Proteínas Hedgehog , Meduloblastoma , Células Madre Neoplásicas , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/metabolismo , Animales , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Metástasis de la Neoplasia , Fenotipo , Femenino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Masculino , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Pronóstico , Movimiento Celular
3.
J Ren Nutr ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38490516

RESUMEN

OBJECTIVES: Low plasma folate levels have been reported in patients undergoing hemodialysis and peritoneal dialysis (PD) in clinical studies. However, folate transport has never been mentioned as a factor contributing to low plasma folate levels in patients undergoing PD. The peritoneal equilibrium test (PET) assesses the plasma creatinine level and glucose transport abilities. This study aimed to evaluate the association between plasma folate levels and folate transport during PD based on PET grades. METHODS: This study recruited 50 patients who underwent PD for ≥3 months and were categorized according to PET grades. Data regarding plasma folate levels and dialysate folate were collected. The primary outcomes were the relationship between the PET grade and plasma folate level and between the PET grade and dialysate-to-plasma folate concentration ratio (D/P folate). Furthermore, the difference in the plasma folate level and D/P folate between men and women was assessed. RESULTS: The plasma folate level and the D/P folate significantly differed among the 4 PET groups (both P < .001). PET grade was significantly negatively correlated with plasma folate levels (r = -0.56, P < .001) and positively correlated with D/P folate (r = 0.686, P < .001). In subgroup analysis, neither the plasma folate level nor the D/P folate significantly differed between men and women. CONCLUSIONS: Our study provides clinical evidence that the PET grade is associated with the plasma folate level and D/P folate, regardless of sex. Larger cohort studies are warranted to assess the importance of folate supplementation during PD based on PET grades.

4.
Plants (Basel) ; 13(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38498444

RESUMEN

Ran GTPases play essential roles in plant growth and development. Our previous studies revealed the nuclear localization of DlRan3A and DlRan3B proteins and proposed their functional redundancy and distinction in Dimocarpus longan somatic embryogenesis, hormone, and abiotic stress responses. To further explore the possible roles of DlRan3A and DlRan3B, gene expression analysis by qPCR showed that their transcripts were both more abundant in the early embryo and pulp in longan. Heterologous expression of DlRan3A driven by its own previously cloned promoter led to stunted growth, increased root hair density, abnormal fruits, bigger seeds, and enhanced abiotic stress tolerance. Conversely, constitutive promoter CaMV 35S (35S)-driven expression of DlRan3A, 35S, or DlRan3B promoter-controlled expression of DlRan3B did not induce the alterations in growth phenotype, while they rendered different hypersensitivities to abiotic stresses. Based on the transcriptome profiling of longan Ran overexpression in tobacco plants, we propose new mechanisms of the Ran-mediated regulation of genes associated with cell wall biosynthesis and expansion. Also, the transgenic plants expressing DlRan3A or DlRan3B genes controlled by 35S or by their own promoter all exhibited altered mRNA levels of stress-related and transcription factor genes. Moreover, DlRan3A overexpressors were more tolerant to salinity, osmotic, and heat stresses, accompanied by upregulation of oxidation-related genes, possibly involving the Ran-RBOH-CIPK network. Analysis of a subset of selected genes from the Ran transcriptome identified possible cold stress-related roles of brassinosteroid (BR)-responsive genes. The marked presence of genes related to cell wall biosynthesis and expansion, hormone, and defense responses highlighted their close regulatory association with Ran.

5.
Plants (Basel) ; 13(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38475508

RESUMEN

The basic leucine zip (bZIP) transcription factors (TFs) are a group of highly conserved gene families that play important roles in plant growth and resistance to adversity stress. However, studies on hormonal regulatory pathways and functional analysis during somatic embryogenesis (SE) in Dimocarpus longan is still unavailable. In this study, a total of 51 bZIP family members were systematically identified in the whole genome of longan, a comprehensive bioinformatics analysis of DlbZIP (bZIP family members of D. longan) was performed, and subcellular localization and profiles patterns after transiently transformed DlbZIP60 were analyzed. The combined analysis of RNA-seq, ATAC-seq and ChIP-seq showed that four members have different H3K4me1 binding peaks in early SE and differentially expressed with increased chromatin accessibility. Comparative transcriptome analysis of bZIPs expression in early SE, different tissues and under 2,4-D treatment revealed that DlbZIP family might involved in growth and development during longan early SE. The qRT-PCR results implied that DlbZIP family were subjected to multiple hormonal responses and showed different degrees of up-regulated expression under indole-3-acetic acid (IAA), abscisic acid (ABA) and methyl jasmonate (MeJA) treatments, which indicated that they played an important role in the hormone synthesis pathways associated with the early SE of longan. Subcellular localization showed that DlbZIP60 was located in the nucleus, and the contents of endogenous IAA, MeJA and ABA were up-regulated in transiently DlbZIP60 overexpressed cell lines. These results suggest that DlbZIP60 may mediate hormones pathways that functions the development during early SE in longan.

6.
Int J Biol Macromol ; 264(Pt 2): 130735, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471611

RESUMEN

Drought is the stressor with a significant adverse impact on the yield stability of tea plants. HD-ZIP III transcription factors (TFs) play important regulatory roles in plant growth, development, and stress responses. However, whether and how HD-ZIP III TFs are involved in drought response and tolerance in tea plants remains unclear. Here, we identified seven HD-ZIP III genes (CsHDZ3-1 to CsHDZ3-7) in tea plant genome. The evolutionary analysis demonstrated that CsHDZ3 members were subjected to purify selection. Subcellular localization analysis revealed that all seven CsHDZ3s located in the nucleus. Yeast self-activation and dual-luciferase reporter assays demonstrated that CsHDZ3-1 to CsHDZ3-4 have trans-activation ability whereas CsHDZ3-5 to CsHDZ3-7 served as transcriptional inhibitors. The qRT-PCR assay showed that all seven CsHDZ3 genes could respond to simulated natural drought stress and polyethylene glycol treatment. Further assays verified that all CsHDZ3 genes can be cleaved by csn-miR166. Overexpression of csn-miR166 inhibited the expression of seven CsHDZ3 genes and weakened drought tolerance of tea leaves. In contrast, suppression of csn-miR166 promoted the expression of seven CsHDZ3 genes and enhanced drought tolerance of tea leaves. These findings established the foundation for further understanding the mechanism of CsHDZ3-miR166 modules' participation in drought responses and tolerance.


Asunto(s)
Camellia sinensis , Resistencia a la Sequía , Camellia sinensis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genoma de Planta , Té/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Plants (Basel) ; 13(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38337990

RESUMEN

Dwarfing is one of the common phenotypic variations in asexually reproduced progeny of banana, and dwarfed banana is not only windproof and anti-fallout but also effective in increasing acreage yield. As a key gene in the strigolactone signalling pathway, DWARF53 (D53) plays an important role in the regulation of the height of plants. In order to gain insight into the function of the banana D53 gene, this study conducted genome-wide identification of banana D53 gene based on the M. acuminata, M. balbisiana and M. itinerans genome database. Analysis of MaD53 gene expression under high temperature, low temperature and osmotic stress based on transcriptome data and RT-qPCR was used to analyse MaD53 gene expression in different tissues as well as in different concentrations of GA and SL treatments. In this study, we identified three MaD53, three MbD53 and two MiD53 genes in banana. Phylogenetic tree analysis showed that D53 Musa are equally related to D53 Asparagales and Poales. Both high and low-temperature stresses substantially reduced the expression of the MaD53 gene, but osmotic stress treatments had less effect on the expression of the MaD53 gene. GR24 treatment did not significantly promote the height of the banana, but the expression of the MaD53 gene was significantly reduced in roots and leaves. GA treatment at 100 mg/L significantly promoted the expression of the MaD53 gene in roots, but the expression of this gene was significantly reduced in leaves. In this study, we concluded that MaD53 responds to GA and SL treatments, but "Yinniaijiao" dwarf banana may not be sensitive to GA and SL.

8.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255805

RESUMEN

GATA transcription factors, which are DNA-binding proteins with type IV zinc finger binding domains, have a role in transcriptional regulation in biological organisms. They have an indispensable role in the growth and development of plants, as well as in improvements in their ability to face various environmental stresses. To date, GATAs have been identified in many gene families, but the GATA gene in longan (Dimocarpus longan Lour) has not been studied in previous explorations. Various aspects of genes in the longan GATA family, including their identification and classification, the distribution of their positions on chromosomes, their exon/intron structures, a synteny analysis, their expression at different temperatures, concentration of PEG, early developmental stages of somatic embryos and their expression levels in different tissues, and concentrations of exogenous hormones, were investigated in this study. This study showed that the 22 DlGATAs could be divided into four subfamilies. There were 10 pairs of homologous GATA genes in the synteny analysis of DlGATA and AtGATA. Four segmental replication motifs and one pair of tandem duplication events were present among the DlGATA family members. The cis-acting elements located in promoter regions were also found to be enriched with light-responsive elements, which contained related hormone-responsive elements. In somatic embryos, DlGATA4 is upregulated for expression at the globular embryo (GE) stage. We also found that DlGATA expression was strongly up-regulated in roots and stems. The study demonstrated the expression of DlGATA under hormone (ABA and IAA) treatments in embryogenic callus of longan. Under ABA treatment, DlGATA4 was up-regulated and the other DlGATA genes did not respond significantly. Moreover, as demonstrated with qRT-PCR, the expression of DlGATA genes showed strong up-regulated expression levels under 100 µmol·L-1 concentration IAA treatment. This experiment further studied these and simulated their possible connections with a drought response mechanism, while correlating them with their expression under PEG treatment. Overall, this experiment explored the GATA genes and dug into their evolution, structure, function, and expression profile, thus providing more information for a more in-depth study of the characteristics of the GATA family of genes.


Asunto(s)
Sapindaceae , Sapindaceae/genética , Intrones , Factores de Transcripción GATA/genética , Hormonas
9.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 190-210, 2024 Jan 25.
Artículo en Chino | MEDLINE | ID: mdl-38258641

RESUMEN

The Spt-Ada-Gcn5-acetyltransferase (SAGA) is an ancillary transcription initiation complex which is highly conserved. The ADA1 (alteration/deficiency in activation 1, also called histone H2A functional interactor 1, HFI1) is a subunit in the core module of the SAGA protein complex. ADA1 plays an important role in plant growth and development as well as stress resistance. In this paper, we performed genome-wide identification of banana ADA1 gene family members based on banana genomic data, and analyzed the basic physicochemical properties, evolutionary relationships, selection pressure, promoter cis-acting elements, and its expression profiles under biotic and abiotic stresses. The results showed that there were 10, 6, and 7 family members in Musa acuminata, Musa balbisiana and Musa itinerans. The members were all unstable and hydrophilic proteins, and only contained the conservative SAGA-Tad1 domain. Both MaADA1 and MbADA1 have interactive relationship with Sgf11 (SAGA-associated factor 11) of core module in SAGA. Phylogenetic analysis revealed that banana ADA1 gene family members could be divided into 3 classes. The evolution of ADA1 gene family members was mostly influenced by purifying selection. There were large differences among the gene structure of banana ADA1 gene family members. ADA1 gene family members contained plenty of hormonal elements. MaADA1-1 may play a prominent role in the resistance of banana to cold stress, while MaADA1 may respond to the Panama disease of banana. In conclusion, this study suggested ADA1 gene family members are highly conserved in banana, and may respond to biotic and abiotic stress.


Asunto(s)
Musa , Musa/genética , Filogenia , Proteínas Fúngicas , Núcleo Celular , Histonas , Estrés Fisiológico/genética
10.
Vaccine ; 42(4): 782-794, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38199923

RESUMEN

Various plant-derived compounds can activate immune responses against bacterial infections, and this property contributes to them being developed as effective and safe adjuvants for vaccines. This study evaluated the potential adjuvant effects of a galactolipid-enriched fraction generated from the medicinal plant Crassocephalum rabens (designated CRA). Heat shock protein 60 of periodontal disease pathogen Actinobacillus actinomycetemcomitans (AaHSP60) was taken as an antigen and mixed with CRA. The AaHSP60/CRA mixture was then injected intraperitoneally into the BALB/c mice. Titers and affinity of specific antibodies were measured by ELISA. Cytokine profiles in mouse serum or culture media of AaHSP60/CRA-treated splenocytes were analyzed by cytokine multiplex assay and ELISA kits. B cell differentiation and macrophage activation were determined by phenotyping. CRA dramatically enhanced specific antibody titers and induced Ig class switch, as shown by increases in the IgG2a, IgG2b, and IgG3 proportions of total Ig in mouse serum. Furthermore, CRA-induced anti-AaHSP60 antibodies had cross-reactivity to other bacterial HSP60s. Cell-based and animal results demonstrated that CRA induced the release of IL-21 and B cell activating factor (BAFF), which stimulated B cell differentiation. CRA enhanced cell proliferation, uptake ability, and antigen presentation in mouse phagocytes. CRA served as a vaccine adjuvant that enhance mouse immunity against pathogenic antigens. CRA strengthened the activation and capabilities of phagocytes and B cells. Therefore, CRA may be a promising adjuvant for bacterial vaccines including periodontal disease.


Asunto(s)
Formación de Anticuerpos , Enfermedades Periodontales , Animales , Ratones , Adyuvantes de Vacunas , Galactolípidos , Adyuvantes Inmunológicos , Interleucina-4 , Inmunoglobulina G , Ratones Endogámicos BALB C
11.
J Agric Food Chem ; 71(47): 18622-18635, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37976371

RESUMEN

Embryogenic cultures of longan (Dimocarpus longan Lour.) contain various metabolites with pharmacological properties that may function in the regulation of somatic embryogenesis (SE). In this study, based on widely targeted metabolomics, 501 metabolites were obtained from the embryogenic calli, incomplete compact proembryogenic cultures, and globular embryos during early SE of longan, among which 41 flavonoids were differentially accumulated during the SE. Using RNA sequencing, 36 flavonoid-biosynthesis-related genes and 43 MYB and 52 bHLH transcription factors were identified as differentially expressed genes. Furthermore, Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the flavonoid metabolism-related pathways were significantly enriched during the early SE. These results suggested that the changes in flavonoid levels in the embryogenic cultures of longan were mediated by MYBs and bHLHs via regulating flavonoid-biosynthesis-related genes, thus potentially regulating early SE. The identified metabolites in the embryogenic cultures of longan can be used to develop pharmaceutical ingredients.


Asunto(s)
Sapindaceae , Transcriptoma , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Sapindaceae/genética , Sapindaceae/metabolismo , Desarrollo Embrionario , Regulación de la Expresión Génica de las Plantas
12.
J Cell Biochem ; 124(12): 1931-1947, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37992207

RESUMEN

The correct assembly of the spindle apparatus directly regulates the precise separation of chromosomes in mouse oocytes, which is crucial for obtaining high-quality oocytes capable of successful fertilization. The localization, assembly, migration, and disassembly of the spindle are regulated by a series of spindle-associated proteins, which exhibit unique expression level variations and specific localization in oocytes. Proteomic analysis revealed that among many representative spindle-associated proteins, the expression level of nucleolar and spindle-associated protein 1 (NUSAP1) significantly increased after meiotic resumption, with a magnitude of change higher than that of other proteins. However, the role of NUSAP1 during oocyte meiosis maturation has not been reported. Here, we report that NUSAP1 is distributed within the cell nucleus during the germinal vesicle (GV) oocytes with non-surrounded nucleolus stage and is not enriched in the nucleus during the GV-surrounded nucleolus stage. Interestingly, NUSAP1 forms distinct granular aggregates near the spindle poles during the prophase of the first meiotic division (Pro-MI), metaphase I, and anaphase I/telophase I stages. Nusap1 depletion leads to chromosome misalignment, increased aneuploidy, and abnormal spindle assembly, particularly a decrease in spindle pole width. Correspondingly, RNA-seq analysis revealed significant suppression of the "establishment of spindle orientation" signaling pathway. Additionally, the attenuation of F-actin in NUSAP1-deficient oocytes may affect the asymmetric division process. Gene ontology analysis of NUSAP1 interactomes, identified through mass spectrometry here, revealed significant enrichment for RNA binding. As an RNA-binding protein, NUSAP1 is likely involved in the regulation of messenger RNA homeostasis by influencing the dynamics of processing (P)-body components. Overall, our results demonstrate the critical importance of precise regulation of NUSAP1 expression levels and protein localization for maintaining mouse oocyte meiosis.


Asunto(s)
Oogénesis , Proteómica , Animales , Ratones , Meiosis , Metafase , Proteínas Asociadas a Microtúbulos/metabolismo , Oocitos/metabolismo , Huso Acromático/metabolismo
13.
J Agric Food Chem ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930796

RESUMEN

The Jasminum sambac flower is famous for its rich fragrance. However, our knowledge of the regulatory network for its aroma formation remains largely unknown and therefore needs further study. To this end, an integrated analysis of the volatilomics and transcriptomics of jasmine flowers at different flowering stages was performed. The results revealed many candidate transcription factors (TFs) may be involved in regulating the aroma formation of jasmine, among which the MYB-related TF LATE ELONGATED HYPOCOTYL (JsLHY) was identified as a hub gene. Using the DNA affinity purification sequencing method, dual-luciferase reporter, and yeast one-hybrid assays, we demonstrate that JsLHY can bind the gene promoter regions of six aroma-related structural genes (JsBEAT1, JsTPS34, JsCNL6, JsBPBT, JsAAAT5, and Js4CL7) and directly promote their expression. In addition, suppressing JsLHY expression decreased both the expression of JsLHY-bound genes and the content of related VOCs. The present study reveals how JsLHY participates in jasmine aroma formation.

14.
Front Plant Sci ; 14: 1255436, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841620

RESUMEN

Introduction: NF-YB transcription factor is an important regulatory factor in plant embryonic development. Results: In this study, 15 longan NF-YB (DlNF-YB) family genes were systematically identified in the whole genome of longan, and a comprehensive bioinformatics analysis of DlNF-YB family was performed. Comparative transcriptome analysis of DlNF-YBs expression in different tissues, early somatic embryogenesis (SE), and under different light and temperature treatments revealed its specific expression profiles and potential biological functions in longan SE. The qRT-PCR results implied that the expression patterns of DlNF-YBs were different during SE and the zygotic embryo development of longan. Supplementary 2,4-D, NPA, and PP333 in longan EC notably inhibited the expression of DlNF-YBs; ABA, IAA, and GA3 suppressed the expressions of DlNF-YB6 and DlNF-YB9, but IAA and GA3 induced the other DlNF-YBs. Subcellular localization indicated that DlNF-YB6 and DlNF-YB9 were located in the nucleus. Furthermore, verification by the modified 5'RNA Ligase Mediated Rapid Amplification of cDNA Ends (5' RLM-RACE) method demonstrated that DlNF-YB6 was targeted by dlo-miR2118e, and dlo-miR2118e regulated longan somatic embryogenesis (SE) by targeting DlNF-YB6. Compared with CaMV35S- actuated GUS expression, DlNF-YB6 and DlNF-YB9 promoters significantly drove GUS expression. Meanwhile, promoter activities were induced to the highest by GA3 but suppressed by IAA. ABA induced the activities of the promoter of DlNF-YB9, whereas it inhibited the promoter of DlNF-YB6. Discussion: Hence, DlNF-YB might play a prominent role in longan somatic and zygotic embryo development, and it is involved in complex plant hormones signaling pathways.

15.
Front Plant Sci ; 14: 1255418, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822335

RESUMEN

Introduction: Cultivated banana are polyploid, with low pollen fertility, and most cultivars are male sterile, which leads to difficulties in banana breeding research. The selection of male parent with excellent resistance and pollen fertility is therefore essential for banana breeding. Wild banana (Musa itinerans) have developed many good characteristics during natural selection and constitute an excellent gene pool for breeding. Therefore, research on wild banana breeding is very important for banana breeding. Results: In the current analysis, we examined the changes in viability of wild banana pollens at different temperatures by in vitro germination, and found that the germination ability of wild banana pollens cultured at 28°C for 2 days was higher than that of pollens cultured at 23°C (pollens that could not germinate normally under low temperature stress), 24°C (cultured at a constant temperature for 2 days) and 32°C (cultured at a constant temperature for 2 days). To elucidate the molecular mechanisms underlying the germination restoration process in wild banana pollens, we selected the wild banana pollens that had lost its germination ability under low temperature stress (23°C) as the control group (CK) and the wild banana pollens that had recovered its germination ability under constant temperature incubation of 28°C for 2 days as the treatment group (T) for transcriptome sequencing. A total of 921 differentially expressed genes (DEGs) were detected in CK vs T, of which 265 were up-regulated and 656 were down-regulated. The combined analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the activation, metabolism of various substances (lipids, sugars, amino acids) play a major role in restoring pollen germination capacity. TCA cycle and the sesquiterpenoid and triterpenoid biosynthetic pathways were also significantly enriched in the KEGG pathway. And we found that some DEGs may be associated with pollen wall formation, DNA methylation and DNA repair. The cysteine content, free fatty acid (FFA) content, H2O2 content, fructose content, and sucrose content of pollen were increased at treatment of 28°C, while D-Golactose content was decreased. Finally, the GO pathway was enriched for a total of 24 DEGs related to pollen germination, of which 16 DEGs received targeted regulation by 14 MYBs. Discussions: Our study suggests that the balance between various metabolic processes, pollen wall remodelling, DNA methylation, DNA repairs and regulation of MYBs are essential for germination of wild banana pollens.

16.
Front Plant Sci ; 14: 1216070, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719217

RESUMEN

Introduction: GRAS, named after GAI, RGA, and SCR, is a class of plant-specific transcription factors family that plays a crucial role in growth and development, signal transduction, and various stress responses. Methods: To understand the biological functions of the banana GRAS gene family, a genome-wide identification and bioinformatics analysis of the banana GRAS gene family was performed based on information from the M. acuminata, M. balbisiana, and M. itinerans genomic databases. Result: In the present study, we identified 73 MaGRAS, 59 MbGRAS, and 58 MiGRAS genes in bananas at the whole-genome scale, and 56 homologous genes were identified in the three banana genomes. Banana GRASs can be classified into 10 subfamilies, and their gene structures revealed that most banana GRAS gDNAs lack introns. The promoter sequences of GRASs had a large number of cis-acting elements related to plant growth and development, phytohormone, and adversity stress responsiveness. The expression pattern of seven key members of MaGRAS response to low-temperature stress and different tissues was also examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The microRNAs-MaGRASs target prediction showed perfect complementarity of seven GRAS genes with the five mac-miRNAs. The expression of all seven genes was lowest in roots, and the expression of five genes was highest in leaves during low-temperature stress. The expression of MaSCL27-2, MaSCL27-3, and MaSCL6-1 was significantly lower under low-temperature stress compared to the control, except for MaSCL27-2, which was slightly higher than the 28°C control at 4 h. The expression of MaSCL27-2, MaSCL27-3, and MaSCL6-1 dropped to the lowest levels at 24 h, 12 h, and 4 h, respectively. The MaSCL27-4 and MaSCL6-2 expression was intermittently upregulated, rising to the highest expression at 24h, while the expression of MaSCL22 was less variable, remaining at the control level with small changes. Discussion: In summary, it is tentatively hypothesized that the GRAS family has an important function in low-temperature stress in bananas. This study provides a theoretical basis for further analyzing the function of the banana GRAS gene and the resistance of bananas to cold temperatures.

17.
Front Genet ; 14: 1243230, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37712067

RESUMEN

Repeated absence of useable embryos is a difficult problem for infertility patients. Among them, embryonic developmental arrest is more common, but the genetic cause is not known. The embryos of a patient who came to our hospital three times could not develop beyond the four-cell stage. In addition to recording the developmental details of the embryos by daily photo-taking, the PADI6 R132C homozygous variants was further confirmed by whole-exome sequencing. Subsequently, PADI6 R132C was analyzed by bioinformatics methods for conservativeness across species. In addition, the possible impact of the pathogenic mutation on the structure of the protein PADI6 were also assessed. Generally, we identified a homozygous variants [NM_207421.4, c.394C>T(p.R132C] in the middle protein-arginine deiminase domain in PADI6 gene. The homozygous variant is highly conserved across species. Homozygous variant in PADI6 R132C could cause a human cleavage-stage embryonic arrest in female patients. These findings provide further evidence for the important roles of the homozygous PADI6R132C variant in embryonic development. Our findings contribute to a deeper understanding of the molecular genetic basis of female infertility.

18.
Plants (Basel) ; 12(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37653964

RESUMEN

GRAS genes are important transcriptional regulators in plants that govern plant growth and development through enhancing plant hormones, biosynthesis, and signaling pathways. Drought and other abiotic factors may influence the defenses and growth of Phoebe bournei, which is a superb timber source for the construction industry and building exquisite furniture. Although genome-wide identification of the GRAS gene family has been completed in many species, that of most woody plants, particularly P. bournei, has not yet begun. We performed a genome-wide investigation of 56 PbGRAS genes, which are unequally distributed across 12 chromosomes. They are divided into nine subclades. Furthermore, these 56 PbGRAS genes have a substantial number of components related to abiotic stress responses or phytohormone transmission. Analysis using qRT-PCR showed that the expression of four PbGRAS genes, namely PbGRAS7, PbGRAS10, PbGRAS14 and PbGRAS16, was differentially increased in response to drought, salt and temperature stresses, respectively. We hypothesize that they may help P. bournei to successfully resist harsh environmental disturbances. In this work, we conducted a comprehensive survey of the GRAS gene family in P. bournei plants, and the results provide an extensive and preliminary resource for further clarification of the molecular mechanisms of the GRAS gene family in P. bournei in response to abiotic stresses and forestry improvement.

19.
Plants (Basel) ; 12(16)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37631138

RESUMEN

Mitogen-activated protein kinases (MAPKs and MPKs) are important in the process of resisting plant stress. In this study, 21, 12, 18, 16, and 10 MPKs were identified from Musa acuminata, Musa balbisiana, Musa itinerans, Musa schizocarpa, and Musa textilis, respectively. These MPKs were divided into Group A, B, C, and D. Phylogenetic analysis revealed that this difference in number was due to the gene shrinkage of the Group B subfamily of Musa balbisiana and Musa textilis. KEGG annotations revealed that K14512, which is involved in plant hormone signal transduction and the plant-pathogen interaction, was the most conserved pathway of the MPKs. The results of promoter cis-acting element prediction and focTR4 (Fusarium oxysporum f. sp. cubense tropical race 4) transcriptome expression analysis preliminarily confirmed that MPKs were relevant to plant hormone and biotic stress, respectively. The expression of MPKs in Group A was significantly upregulated at 4 °C, and dramatically, the MPKs in the root were affected by low temperature. miR172, miR319, miR395, miR398, and miR399 may be the miRNAs that regulate MPKs during low-temperature stress, with miR172 being the most critical. miRNA prediction and qRT-PCR results indicated that miR172 may negatively regulate MPKs. Therefore, we deduced that MPKs might coordinate with miR172 to participate in the process of the resistance to low-temperature stress in the roots of the banana. This study will provide a theoretical basis for further analysis of the mechanism of MPKs under low-temperature stress of bananas, and this study could be applied to molecular breeding of bananas in the future.

20.
Front Cell Neurosci ; 17: 1146278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545878

RESUMEN

Inhibitory γ-aminobutyric acid (GABA)-ergic interneurons mediate inhibition in neuronal circuitry and support normal brain function. Consequently, dysregulation of inhibition is implicated in various brain disorders. Parvalbumin (PV) and somatostatin (SST) interneurons, the two major types of GABAergic inhibitory interneurons in the hippocampus, exhibit distinct morpho-physiological properties and coordinate information processing and memory formation. However, the molecular mechanisms underlying the specialized properties of PV and SST interneurons remain unclear. This study aimed to compare the transcriptomic differences between these two classes of interneurons in the hippocampus using the ribosome tagging approach. The results revealed distinct expressions of genes such as voltage-gated ion channels and GABAA receptor subunits between PV and SST interneurons. Gabrd and Gabra6 were identified as contributors to the contrasting tonic GABAergic inhibition observed in PV and SST interneurons. Moreover, some of the differentially expressed genes were associated with schizophrenia and epilepsy. In conclusion, our results provide molecular insights into the distinct roles of PV and SST interneurons in health and disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...